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1 Introduction

Over the last 16 years our group at the University of Michigan has been de-
veloping a general use global MHD code, BATS-R-US, and the Space Weather
Modeling Framework (SWMF) that couples domain models extending from the
Sun to planetary upper atmospheres and ionospheres. BATS-R-US and the
SWMF have been extensively used to simulate a broad range of space science
phenomena. Still there are many unmet challenges. There is a need to go
beyond ideal MHD and to improve the efficiency of the numerical schemes.

In the first year of this AISRP we have developed

• finished and published the Hall MHD scheme

• added an electron equation to the MHD equations

• added a multi-ion MHD equation module

• tested the empirical resistivity model by M. Kuznetsova

In the second year we have

• added the electron pressure gradient term to Hall MHD

• finished the multi-ion MHD implementation and published a paper

• implemented a prototype for the time-accurate local time stepping algo-
rithm

• started work on the non-isotropic pressure
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• implemented a new algorithm to reduce the numerical diffusion

Our systematic studies of the non-gyrotropic model indicate that it is unlikely
to produce physically correct results for complex and realistic magnetospheric
simulations. Once the sawtooth oscillations are started, they continue even
when the physical parameters in the solar wind do not justify the presence of
the oscillations (according to observations). For this reason we have decided not
to pursue the generalization of the non-gyrotropic model to the non-symmetric
case.

Below we will describe the developments performed in the second year of the
project in more detail.

1.1 Electron pressure gradient in Hall MHD

The Hall MHD equations have been implemented with explicit and implicit time
stepping, on Cartesian and generalized block-adaptive grids. The code scales
well to many hundreds of processsors. The details of the algorithm and a series of
tests have been published in the Journal of Computational Physics (G. Toth, Y.
J. Ma, T. I. Gombosi, 2008, JCP, 227, 6967-6984). Some applications have also
been published (3D global multi-Species Hall-MHD simulation of the Cassini
T9 flyby, Y. J. Ma et al, 2007, Geophysical Research Letters, 34, L24S10).

We have recently added the electron pressure gradient term into the gener-
alized Ohm’s law:

E = −ue × B + ηJ −
∇pe

ene

(1)

where ue = u − J/(e ne) is the electron velocity, u is the bulk velocity, B is
the magnetic field vector, J is the current density, η is the resistivity, −e is the
charge of the electron, ne is the electron number density, and pe is the electron
pressure. The new term is the last one. Since the electric field is needed at
the cell faces in the induction equation ∂B/∂t = −∇×E, we have to discretize
the electron pressure gradient at the cell faces. This is quite challenging at
resolution changes. We use the same discretization techniques as developed for
the Hall term, where J = ∇×B has to be calculated at the cell interfaces. The
algorithm is described in the 2008 JCP paper.

The electron pressure pe is either approximated as a fixed fraction of the ion
pressure, or we solve the electron pressure equation:

∂pe

∂t
+ ∇ · (uepe) = −(γ − 1)pe∇ · ue + ηJ2 + S(pe) (2)

Note that the Joule heating is present in the electron pressure equation, but it is
negligible (due to a coefficient of electron mass per ion mass) in the ion pressure
equation. S(pe) represents arbitrary source terms, including the ion-electron
collisional heat exchange term in case of non-negligible classical resistivity.

An interesting test of the electron pressure gradient term is the generation
of magnetic field from zero initial conditions. This is the only term that can
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generate B from “nothing”. The initial conditions are B = 0, u = 0, ne =
n0 + n1 cos(kxx) and pe = p0 + p1 cos(kyy). The resulting magnetic field is

∂Bz

∂t
=

kxkyn1p1 sin(kxx) sin(kyy)

(n0 + n1 cos kxx)2
(3)

Our test used kx = ky = π/10, n0 = p0 = 1 and n1 = p1 = 0.1 on a |x|, |y| ≤ 10
periodic domain. We have successfully verified that the code reproduces the
analytic solution with the expected order of accuracy.

Adding this term completes the implementation of the two-fluid Hall MHD
equations into BATSRUS.

1.2 Multi-ion MHD equations

We have finished the implementation of the multi-ion MHD equations. The
gradient of the electron pressure was missing in the preliminary implementation,
this is now corrected. The momentum equation for the ion fluid s is now written
as

∂ρsus

∂t
+∇· (ρsusus + Ips) = nsqs (us − u+)×B+

nsqs

nee
(J × B−∇pe)+Sρsus

(4)
where qs and ns are the charge and number density of the ion fluid s, respec-
tively, and u+ is the charge weighted average of the ion velocities.

We have used the multi-fluid code to model the magnetosphere including
the oxygen outflow from the ionosphere. The outflow can be specified as a
constant flow with fixed densities and velocities for the two fluids, or we can
use the Polar Wind Outflow Model (PWOM) to provide these quantities at
the inner boundary of the magnetosphere model (BATS-R-US). The results
have been written up in a paper that has been accepted by the Journal of
Geophysical Research: “Multi-Fluid BATS-R-US: Magnetospheric Composition
and Dynamics During Geomagnetic Storms, Initial Results” by A. Glocer, G.
Toth, Y. Ma, and T. Gombosi.

We are also applying the multifluid MHD code to Mars. This work is done
by Dalal Najib (graduate student), Andrew Nagy and Gabor Toth. In the Mars
ionosphere there are four ion fluids (hydrogen, atomic oxygen, molecular oxygen
and carbon dioxide) and we employ a spherical grid. We have made substantial
progress but there are still some issues that need to be resolved.

1.3 Time-accurate local time-stepping

We have implemented a preliminary algorithm that uses different time steps in
different blocks, yet the whole simulation advances in a time-accurate manner.
The prototype algorithm mainly follows the ideas described in “An explicit
multi-time-stepping algorithm for aerodynamic flows” by H. van der Ven, B.E.
Niemann-Tuitman, and A.E.P. Veldman, Journal of Computational and Applied
Mathematics 82, 423 (1997). The basic idea is to calculate the smallest of the
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stable time steps in each block, then update a “master clock” with this time
step, but advance blocks with a locally stable time step when their individual
time falls behind the master clock. The ghost cells of the blocks are interpolated
in time.

For sake of parallel efficiency the block time steps are rounded down to
integer powers of 2 times the smallest time step. This creates relatively few
groups of blocks with identical time steps (i.e. they are advanced at the same
time) which makes load balancing much easier. It also makes the flux-correction
step much simpler to implement than in case of arbitrary time steps that can
overlap arbitrarily. In fact, the Berger and Colella scheme (that employs time
steps proportional to the cell size of the AMR grid) can be regarded as a special
case of the above algorithm.

We also plan to allow local time step adjustments during the global time
step in case stability requires. This may be required if the solution changes a
lot in a single global time step. This may slightly offset the load balancing, but
will avoid stability issues.

The prototype implementation demonstrates second order accuracy and sta-
bility with local time steps on two levels of an AMR grid. The local CFL number
is the same (0.8) as for the fixed time step algorithm. The flux correction step
and load balancing will be implemented soon.

1.4 Non-isotropic pressure

We have started work on the MHD equations with non-isotropic pressure. As
a first step we have implemented a new equation module with an extra parallel
(with respect to the magnetic field) pressure variable in addition to the usual
MHD variables. We will solve for the parallel and total pressures. The orthogo-
nal pressure can be obtained as a derived quantity. The next step will be adding
the flux and source terms.

1.5 New algorithm for reduced numerical diffusion

Although it was not part of the original AISR proposal, we have implemented
a new algorithm that fits nicely into the physics and algorithmic improvements
of the project.

The basic idea actually comes from the Hall MHD algorithm developed in the
first year of this project. We noticed that in an implicit time stepping scheme one
can reduce or even ignore the numerical diffusion associated with the whistler
wave speed, and this can greatly increase the accuracy of the scheme, while the
oscillation-free property is still maintained as long as there are no fast whistler
waves present in the simulation.

The same idea can be applied to ordinary MHD. One can use an implicit time
stepping and limit the diffusive numerical flux to some well chosen maximum
speed. For example in a magnetosphere simulation, one may limit the wave
speed used in the numerical flux to 2000 km/s. Our numerical experiments
show that the numerical code remains stable, and the numerical diffusion is
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greatly reduced. The effect is similar to the Boris correction with an artificially
reduced speed of light, but there are two distinct differences:

• The MHD equations are not modified by the flux limiting, only the numer-
ical scheme. The Boris correction with the reduced speed of light changes
the equations.

• The flux limiting can be employed in the Roe scheme too, while the Boris
correction cannot.

We plan to publish a short note on this scheme and the obtained results in
the near future with Xing Meng (graduate student), Gabor Toth and Tamas
Gombosi.
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